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Abstract

Runtime verification is the task of checking whether a given system
satisfies its specification at runtime. This is usually accomplished using
a runtime verification monitor: A program verifying the behaviour
of a system. The monitor takes as input the actions taken by the
target system and verifies whether they satisfy the specification at
all times. The Institute of Information Security at ETHZ developed
a formally verified monitor called VeriMon. VeriMon uses formulas
in metric first-order temporal logic (MFOTL) as a way of formally
specifying the behaviour of a target system and outputs all assignments
to the free variables that satisfy a formula at given points in time.
Since VeriMon uses finite tables to represent its output and reports
all satisfying assignments, formulas with infinitely many satisfying
assignments such as the negation of a formula with finitely many
satisfying assignments cannot be monitored. It is possible to derive
syntactic conditions (also called safety conditions) that guarantee that
a given formula can be monitored by exclusively using finite tables in
order to represent the intermediate results. If a given formula satisfies
the safety conditions, the formula and the evaluation of said formula
are called safe.

The MFOTL operator Since requires the satisfaction of a formula at all
time points since another formula was satisfied. Trigger is the dual
operator of Since and expresses its negation. The operators Until and
Release are the symmetric counterparts to Since and Trigger reach into
the future instead of the past. Because Trigger and Release are defined
in terms of negations of formulas, the evaluation according to their
definition often results in an infinite amount of satisfying assignments
to the free variables.

This Bachelor’s thesis presents MFOTL formulas semantically equivalent
to the MFOTL operators Trigger and Release that reduce these operators
to the more standard MFOTL operators Since and Until while relaxing
the safety conditions compared to those implied by the definition of
the dual operators. Moreover VeriMon is extended to support the
evaluation of Trigger and Release under the relaxed safety conditions.
The most straight-forward approach is to translate the operators to the
semantically equivalent formulas within the monitoring algorithm. This
effectively reduces the task of monitoring to the cases of Since and Until.
An alternative approach pursued is the development of a specialized
monitoring algorithm for Trigger. This specialized algorithm achieves
a better performance in our empirical evaluation than the evaluation
of the translated formulas. The semantic equivalence of the translated
formulas and the correctness of the specialized monitoring algorithm
are formally proven using the Isabelle/HOL proof assistant.
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Chapter 1

Introduction

Many security-critical systems run on complex software stacks for which
it is becoming increasingly more difficult to cover every possible execution
with tests. Often one cannot tolerate bugs in these security-critical systems
and hence one would like to have stronger guarantees than tests give. An
alternative to tests is to formally verify the program, i.e. to rigorously prove
its correctness formulated as a mathematical statement. This can result in
strong guarantees, but the process of formally verifying a program is very
time-consuming. Yet another approach is to monitor the behaviour of the
system during its execution at runtime. The latter approach is called runtime
verification.

1.1 Formal Static Verification

In this section, approaches to formal verification of systems are presented. As
already mentioned, formal verification is another way of getting guarantees
for systems. In contrast to testing, formal verification is able to give much
stronger guarantees such as the correctness for all possible inputs. Especially
for security-critical applications, guarantees over all inputs are much more
desirable as the program’s properties are no longer dependent on the test
coverage, i.e. how many possible executions of the system are covered by
tests.

1.1.1 Theorem Provers

In mathematics, proofs consist of statements that logically follow from each
other. Mostly one starts with some assumptions and then shows that these
assumptions imply some conclusion. Usually, the steps between these state-
ments are kept rather short so that readers can follow the thought process
and hence verify whether the proof is correct.
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1.2. Runtime Verification

Theorem provers are a way to automate this procedure: Instead of having
humans check the proofs, the proofs are verified automatically. This is much
quicker and less error-prone since a computer can be instrumented to base
the verification only on a small set of axioms and lemmas derived from these
axioms. Of course a human still has to make sure that the defined axioms
are sound but this is a non-recurring task and thus scales much better than
manually verifying every new line of a proof.

Isabelle [22] and Coq [3] are examples of general-purpose theorem provers
based on the paradigm of functional programming. A comparison of the two
is made by Yushkovskiy [26]. In addition to the ability to prove formalized
mathematical statements, Isabelle and Coq both support code generation
[1, 19]. This means that after formally defining data types and functions,
one can directly export them to executable code with guaranteed partial
correctness. Partial correctness in contrast to total correctness does not
guarantee termination. If in addition properties about the exported functions
were proven, the exported code is guaranteed to satisfy them. We refer to
Nipkow and Klein that introduce Isabelle and HOL in a practical way [21].

1.1.2 Verifying Imperative Code

As mentioned in Section 1.1.1, theorem provers work very well for functional
programming. For imperative programming, other approaches such as Hoare
triples [16] exist.

Hoare triples have the form of P{C}Q where P is called the precondition,
Q the postcondition and C is the program these assertions are about. The
meaning of such a Hoare triple is that if the program C is executed when the
precondition P is satisfied, then either the program does not terminate or the
postcondition Q is established afterwards.

Examples for pieces of software making use of these approaches are Viper
[20] or Dafny [18] which are both based on Boogie [17]. A major difference
to theorem provers is that the code is not generated, one instead directly
proves properties about the hand-written code. Viper and Dafny which were
first presented in 2015 [20] and 2010 [18], respectively, are relatively new
compared to Isabelle which was first presented in 1986 [22] and Coq which
was first released in 1989 [4] but the concepts Viper and Dafny make use of
have been around for much longer as well: Hoare triples, for example, were
introduced in 1969 [16].

1.2 Runtime Verification

Runtime verification is an alternative approach to verifying the behaviour of
a system: Instead of verifying properties about a system ahead of it being
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1.2. Runtime Verification

run, runtime verification tackles this problem during or after the system’s
execution. As in formal verification (Section 1.1), one must first describe
the desired behaviour in a formal specification. An additional program
called the monitor verifies whether the target system behaves as described by
the specification. Runtime verification can operate in two different settings:
online and offline monitoring.

Online monitoring In online monitoring the case where the target system is
run side-by-side a monitor is considered. All information about the behaviour
of the target system relevant for the specification is passed to the monitor.
The monitor then verifies whether the system satisfies the specification at all
times and reports potential violations while the system is executing.

Offline monitoring In contrast to online monitoring, offline monitoring is
performed asynchronously. The information relevant for the specification
is for example written to a log file. Later this log file can be used as the
input to the monitor which will then check whether the program behaved as
described in the specification and report violations if there were any.

There is a big difference between formal verification and runtime verification
of software: In the former the program is effectively prevented from having
a behaviour different from its specification while in the latter instances
where the program does not behave according to the specification are just
detected. Still, runtime verification has one major advantage over formal
verification and that is productivity: Most software written today is not
formally verified as writing formally verified software is much more time
consuming. It requires the programmer to rigorously prove properties about
the program she or he writes. Rewriting large existing programs to make
use of formal verification seems impractical for many applications whereas
runtime verification can be added incrementally with minor changes to
existing codebases. Depending on the use case this might strike a good
balance between development time and effectiveness: If bugs need not be
prevented at all cost but their detection suffices, runtime verification might
be a good choice. Violations of the specification are reported which enables
the developers to take action and fix the detected flaws. For a more in-depth
introduction to runtime verification we refer to the book by Bartocci et al.
[10].

1.2.1 Traces

A question that remains is how the information about the programs behaviour
is represented. A standard approach is to have a list of sets of events paired
with a timestamp. An event contains information about the program’s state
at the respective point in time. As time just passes in one direction, the
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1.2. Runtime Verification

timestamps are monotonically increasing. The indices in this event list are
called time points [12] whereas the whole list is called a trace. One can
also describe a trace as a log containing the relevant information about the
program’s behaviour.

Events that appear to occur at the same time can be grouped together in
a database [11]. One way to represent the information about the programs
behaviour is to use first-order predicates which means databases are sets of
first-order predicates. Note that even though simultaneous events can be
grouped in databases, multiple trace entries are still allowed to have the same
timestamp.

As an example we present a login system using the two predicates LoggedIn(u)
and LogsIn(u) where the former is satisfied at a given time point if and only
if the user u is logged in and the latter if and only if the user performs the
login at the respective time point. An example trace is depicted in Table 1.1.

time point timestamp database
0 5 {LogsIn("Alice")}
1 6 {LoggedIn("Alice")}
2 6 {LoggedIn("Alice")}
3 7 {LoggedIn("Alice")}
4 7 {LoggedIn("Alice"), LogsIn("Bob")}
5 8 {LoggedIn("Alice")}

Table 1.1: An example trace

1.2.2 Specifications

In addition to having a way to represent the behaviour of the program,
a way to formulate the specification is required. The choice should not
be natural language as words usually have multiple meanings and would
thus result in ambiguous specifications. Mathematical notation is as precise
as it gets and in fact different types of logic have been used for runtime
verification specifications: Linear temporal logic (LTL) [23], metric temporal
logic (MTL) [25], metric first-order temporal logic (MFOTL) [13], metric
first-order dynamic logic (MFODL) [11] or metric interval temporal logic
(MITL) [14]. Alur and Henzinger [9] compare the expressiveness, syntax and
semantics of some of these LTL variants. For a general introduction to logic
we refer to the book by Enderton [15].

The various logics differ in whether they allow predicates with data and
quantifiers (first-order logic) and how time is modelled. In linear temporal
logic there are operators imposing conditions on the past and future but
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their range is not restricted. In metric temporal logic the range of temporal
operators can be restricted using intervals over discrete timestamps whereas
metric interval temporal logic allows intervals over continuous timestamps.

Going back to the example from section 1.2.1, it is now possible to give a
specification like

LoggedIn(u) S[0,∞) LogsIn(u) (1.1)

This specification can be read as follows: Since a given user u logged in
(LogsIn(u)), he is logged in (LoggedIn(u)). The operator S is called Since
and the subscript [0, ∞) means its range is not restricted. The syntax and
semantics are formally introduced in Section 2.2. Informally a Since operator
requires the left-hand side to hold since the next time point after the right-
hand side held in the past up until the current time point.

Given this informal semantics and the example trace in Table 1.1, one can
deduce that formula 1.1 is satisfied at all time points for the assignment
u = "Alice" to the free variable. At time point 4, the formula is also sat-
isfied for the assignment u = "Bob" but at time point 5, formula 1.1 is
violated for u = "Bob" as LoggedIn("Bob") did not hold in time point 5
after LogsIn("Bob") was part of the database at time point 4.

1.3 Monitorable MFOTL Formulas

D. Basin et al. [12] describe two approaches for monitoring MFOTL formulas.
One approach builds on finite automata and the other on finite tables. Since
the latter approach makes use of finite tables, it is often possible to use the
operations from relational algebra to manipulate the finite tables efficiently.
Unfortunately not all MFOTL formulas have equivalent descriptions in rela-
tional algebra and hence the class of MFOTL formulas has to be restricted
if one wants to represent the results using finite tables containing the set of
all satisfying assignments to the free variables. It is possible to syntactically
restrict formulas to a subset where this property is guaranteed. We call this
subset safe formulas and a given formula safe or unsafe depending on whether
it is part of said subset. The evaluation of safe formulas using relational
algebra (finite tables) is closely related to the concept of RANF described by
Abiteboul et al. [8, Section 5.4].

A simple example for an unsafe formula is the negation of an equality:
¬(x = 3) for the free variable x ∈ N. For any x ∈ N\{3}, the formula is
satisfied and hence the set of all satisfying assignments to the free variables
cannot directly be represented by a finite table.

5



1.4. Trigger and Release

The safe evaluation of a formula denotes a procedure to obtain its satisfying
assignments by only using finite tables to represent the intermediate results
of certain subformulas. Moreover it is in general not possible to monitor a
formula that requires some conditions to hold for an infinite amount of time
because the monitoring algorithm does not have access to an infinite trace of
an observed system’s execution. Formulas that only impose conditions on a
finite number of future time points are called future bounded. If a formula is
safe and future bounded it is called monitorable.

VeriMon is a formally verified runtime monitor developed by the Institute
of Information Security at ETHZ that operates on the subset of monitorable
MFOTL formulas just described. [24].

1.4 Trigger and Release

The semantics of the MFOTL operator Until are analogous to the operator
Since that was already introduced informally in 1.2.2: Until requires the
left-hand side to be satisfied from the current time point up until the last
time point before the right hand side is satisfied. The symbol denoting Until
is U.

Trigger (T) and Release (R) are the dual operators of Since and Until, respec-
tively. Informally this means they express their negation. As an example for
Trigger, one can think of an application with the same predicates LogsIn,

LoggedIn as defined in Section 1.2.1 and the additional predicate LogsOut

defined symmetrically to LogsIn. The specification might include something
like ”After logging in, the user will remain logged in”. This can then be
expressed as LogsIn(u) T[0,∗) LoggedIn(u), i.e. the action LogsIn ”triggers”
the state LoggedIn.

For Release, the same predicates can be used but now the specification is
”The user remains logged in as long as she does not log out”. This can be
expressed by formula LogsOut(u) R[0,∗) LoggedIn(u), i.e. the action LogsOut

”releases” the state LoggedIn.

1.5 Contributions

This thesis is concerned with the safe evaluation of the MFOTL dual operators
Trigger and Release. By their definition they are inherently unsafe and hence
it is not straightforward how to monitor them. First a translation of the
dual operators into semantically equivalent formulas only using the standard
operators Since and Until is presented. This would already allow their
evaluation in VeriMon under less strict safety conditions. However the
evaluation of these translated formulas is not as performant as it could be
and hence a specialized, more performant algorithm for the evaluation of
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1.5. Contributions

Trigger is developed along with a proof of its semantic correctness in Isabelle
/ HOL. The performance of the specialized algorithm is then compared to the
performance of the translated formulas in various settings. Last but not least,
the asymptotic behaviour of the running time of the translated formulas and
the specialized algorithm are assessed as well.
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Chapter 2

Preliminaries

2.1 Since and Until

Since and Until are two binary MFOTL operators that allow the specification
of a temporal relationship between multiple time points in a trace. Their
semantics are defined formally in definition (2.3), here just an intuition for
their meaning is presented. The operator Since requires a given condition ϕ
to hold since another condition ψ held.

ij

Figure 2.1: Example of a since

Slightly more formally, a Since is satisfied at a time point i in the trace, if
there exists a j < i in the past where ψ was satisfied and if at all time points
strictly greater than j up to (and including) i, the formula ϕ is satisfied. This
scenario is depicted in Figure 2.1.

Analogously, Until requires a condition ϕ to hold until another condition ψ
is satisfied. Figure 2.2 shows this scenario.
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2.2. Metric First-Order Temporal Logic

ji

Figure 2.2: Example of an until

The difference is the temporal direction they impose their restrictions on:
Since specifies conditions on the past whereas Until on the future. As men-
tioned before, MFOTL allows the restriction of the range of these temporal
operators. Informally this just means that the timestamp associated with the
time point j since when or up until when ϕ has to be satisfied must lie within
some range of timestamps. This range is specified using an interval I = [a, b)
where a denotes the minimal difference in time and b is an upper bound for
said time difference.

2.2 Metric First-Order Temporal Logic

This section formally introduces the syntax and semantics of MFOTL. The
notation, syntax and semantics used in this thesis are the same as the ones
described by Basin et al. [12, Chapter 2]. Hence the remainder of this section
very closely follows chapter 2 of the paper “Monitoring Metric First-order
Temporal Properties” [12]. The concepts defined here use the same names,
symbols and notation as introduced by Basin et al. [12].

Let I be the set of nonempty intervals over the natural numbers, N =
{0, 1, ...}. Any element in I can be expressed as a pair [a, b) where a ∈ N,
b ∈N∪ {∞} and a < b.

Next, atomic predicates are defined. An atomic predicate is characterized by
a unique symbol and an arity (number of arguments). Hence the set of all
atomic predicates can be described with a pair (R, ι) where R is the set of
atomic predicate symbols and ι a function mapping from the set of atomic
predicate symbols R to the natural numbers, corresponding to the arity of
the respective atomic predicate. Moreover let C be a finite set of constants
disjoint from R. The tuple (C, R, ι) is then called a signature [12]. Finally let
V be a global countably infinite set of variables where V is always disjoint
from C and R.

Definition 2.1 MFOTL formulas over the signature S = (C, R, ι) are recur-
sively defined as follows:

1. For any two symbols from the set of constants and variables t1, t2 ∈
C ∪V, t1 ≈ t2 is a formula.
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2.2. Metric First-Order Temporal Logic

2. For any predicate symbol r ∈ R and arguments t1, ..., tι(r) ∈ V ∪ C, the
predicate r(t1, ..., tι(r)) is a formula.

3. For any formula ϕ, (¬ϕ) is a formula.

4. For any formulas ϕ and ψ, (ϕ ∨ ψ) is a formula.

5. For any variable v ∈ V and formula ϕ, (∃x.ϕ) is a formula.

6. For any interval I ∈ I and formula ϕ, ( I ϕ) and (#I ϕ) are formulas.

7. For any interval I ∈ I and formulas ϕ and ψ, (ϕ SI ψ) and (ϕ UI ψ) are
formulas.

The operator  is called ”Previous” whereas # is called ”Next”.

Moreover, the following standard abbreviations are used:

ϕ ∧ ψ := ¬ ((¬ϕ) ∨ (¬ψ))

ϕ→ ψ := (¬ϕ) ∨ ψ

∀x. ϕ := ¬ (∃x. (¬ϕ))

In addition, the temporal operators � ”Once” and � ”Eventually” are defined
as follows:

�I ϕ := True SI ϕ

�I ϕ := True UI ϕ

where I ∈ I and True corresponds to some valid formula without any free
variables such as ∃x. x ≈ x [12]. In the remainder of this thesis, the abbrevia-
tion True will be used with the same semantics, hence we additionally define
True to be syntactic sugar for ∃x. x ≈ x as well as False for ∃x.¬ (x ≈ x).

Next we define the operator Trigger and Release formally.

Definition 2.2 The operators Trigger and Release are defined as the dual
operators of S and U, respectively:

ϕ TI ψ := ¬ ((¬ ϕ) SI (¬ ψ))

ϕ RI ψ := ¬ ((¬ ϕ) UI (¬ ψ))

The temporal operators � ”Historically” and � ”Always” are defined as
special cases of Trigger and Release:

�I ϕ := False TI ϕ

�I ϕ := False RI ϕ

10



2.2. Metric First-Order Temporal Logic

In the following, the set of free variables of a formula ϕ will be denoted by
f ree(ϕ). For the sake of notational simplicity, the order of the free variables in
ϕ is fixed by having a vector of free variables x̄ = (x1, ..., xn) with f ree(ϕ) =
{x1, ..., xn} associated with the formula. Moreover if for some formula ϕ, the
set f ree(ϕ) is empty, the formula is called closed.

In order to omit certain parentheses, standard operator binding strengths
are used [12]. The operator ¬ binds stronger than ∧ which in turn binds
stronger than ∨. The operator ∨ binds stronger than the existential quantifier
∃ which still binds stronger than all temporal operators.

After defining the syntax of MFOTL formulas, their semantics can be defined.
First the notion of a structure D over a signature S = (C, R, ι) is introduced
[12]. Such a structure consists of a domain |D| 6= ∅ and interpretations
cD ∈ |D| and rD ⊆ |D|ι(r) for every c ∈ C and r ∈ R. Note that the bars
around D do not denote the cardinality of D (D is not even a set) but rather
the domain of the structure D.

On top of a structure, a temporal structure [12] can be built. That is a tuple
(D̄, τ̄) where D̄ stands for a sequence of structures D0,D1, ... and τ̄ for a
sequence of natural numbers τ0, τ1, ... . A temporal structure must satisfy the
following conditions:

1. The sequence τ̄ of timestamps is monotonically increasing and for every
t ∈N, there exists a time point i ∈N so that τi > t, i.e. the time-stamps
eventually increase.

2. The domain does not change, i.e. |Di| = |Dj| holds for all time points
i, j ∈N.

3. The interpretation of constants does not change, i.e. cDi = cDj holds for
all time points i, j ∈N.

Since the domain and the interpretation of the constants does not change,
they are denoted with |D̄| and cD̄, respectively.

Last but not least, some variable assignments for the variables V are required
in order to define the semantics. Let v be a function mapping from the set of
variables V to the domain |D̄|. Such a function is called a valuation [12] and
maps every variable to a value from the domain.

For any x, y ∈ V and d ∈ |D̄|, let

v[y 7→ d](x) =
{

d if x = y
v(x) otherwise

be the function obtained by updating where the value y is mapped to in the
function v. Analogously, for any n ∈ N, pairwise distinct variable vector
ȳ = (y1, ..., yn) and d̄ = (d1, ..., dn) ∈

∣∣D̄∣∣n, let
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2.3. Tables

v[ȳ 7→ d̄](x) =
{

di if x = yi for some i ∈ {1..n}
v(x) otherwise

be the function, where all variables in the variable vector ȳ are mapped to
the values according to d̄ and the other mappings remain unchanged.

As done in [12], we will also abuse notation and allow the application of the
valuation v to constants c ∈ C where v just maps them to their interpretation,
i.e. v(c) = cD̄.

Now everything is introduced so that the semantics of MFOTL formulas can
be defined:

Definition 2.3 Let (D̄, τ̄) be a temporal structure over the signature S =
(C, R, ι) with D̄ = D0,D1, ... and τ̄ = τ0, τ1, .... Moreover let α be a formula
over the same signature S and let v be a valuation.

Then the formula α is satisfied at some index i ∈N in the temporal structure
if and only if (D̄, τ̄, v, i) |= α. The relation (D̄, τ̄, v, i) |= α is recursively
defined as follows:

(D̄, τ̄, v, i) |= t ≈ t′ ⇔ v(t) = v(t′)

(D̄, τ̄, v, i) |= r(t1, . . . , tι(r)) ⇔
(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄, v, i) |= (¬ϕ) ⇔ (D̄, τ̄, v, i) 6|= ϕ

(D̄, τ̄, v, i) |= (ϕ ∨ ψ) ⇔ (D̄, τ̄, v, i) |= ϕ or (D̄, τ̄, v, i) |= ψ

(D̄, τ̄, v, i) |= (∃x. ϕ) ⇔ (D̄, τ̄, v[x 7→ d], i) |= ϕ, for some d ∈ |D̄|
(D̄, τ̄, v, i) |= ( I ϕ) ⇔ i > 0∧ τi − τi−1 ∈ I ∧ (D̄, τ̄, v, i− 1) |= ϕ

(D̄, τ̄, v, i) |= (#I ϕ) ⇔ τi+1 − τi ∈ I and (D̄, τ̄, v, i + 1) |= ϕ

(D̄, τ̄, v, i) |= (ϕ SI ψ) ⇔ ∃j ≤ i. (τi − τj) ∈ I ∧ (D̄, τ̄, v, j) |= ψ ∧
(D̄, τ̄, v, k) |= ϕ for all k ∈N with j < k ≤ i

(D̄, τ̄, v, i) |= (ϕ UI ψ) ⇔ ∃j ≥ i. (τj − τi) ∈ I ∧ (D̄, τ̄, v, j) |= ψ ∧
(D̄, τ̄, v, k) |= ϕ for all k ∈N with i ≤ k < j

2.3 Tables

In a given temporal structure (D̄, τ̄), for any formula ϕ with free variable
vector x̄ = (x1, ..., xn) and for any time point i ∈ N there exists a possibly
empty or infinite set of satisfying tuples defined by

12
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ϕ(D̄,τ̄,i) :=
{

d̄ ∈ |D̄|n (D̄, τ̄, v[x̄ 7→ d̄], i) |= ϕ, for some valuation v
}
[12]

This definition is motivated by the fact that the satisfaction of a formula
ϕ under a variable assignment only depends on the mappings of the free
variables x̄. Hence, one can represent it by a tuple over x̄.

These satisfying tuples can be represented in a table where the columns corre-
spond to the free variables x̄ and the rows to the different assignments to the
free variables. Hence a single element of the set ϕ(D̄,τ̄,i) corresponds to a sin-
gle row. Example tables for the formulas ϕ = r(x, y, z) and ϕ = r(x, y, x) are
shown in Table 2.1 and Table 2.2, respectively. The atomic predicate r corre-
sponds to the following relation: r = {(1, 1, 1), (1, 3, 4), (4, 3, 4), (4, 3, 5), (5, 1, 5)}.

x y z
1 1 1
1 3 4
4 3 4
4 3 5
5 1 5

Table 2.1: An example table for the formula ϕ = r(x, y, z)

x y
1 1
4 3
5 1

Table 2.2: An example table for the formula ϕ = r(x, y, x)

2.4 Monitorability

Definition 2.4 Let safe formula be a unary predicate on formulas. For any
formula ϕ, safe formula(ϕ) holds if and only if ϕ satisfies the syntactic
conditions defined in Figure 2.3. A formula ϕ satisfying these conditions, i.e.
if safe formula(ϕ) holds, is called safe.

The predicate safe formula describes syntactic restrictions guaranteeing that
a given formula can be monitored by only using finite tables to represent
the intermediate results. Moreover if a given formula satisfies the predicate

13
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safe formula then the set of satisfying assignments to the free variables of
said formula can also be represented using a finite table.

Lemma 2.5 For all formulas ϕ, the following statement holds.

ϕ is safe→ ∀ D̄ τ̄ i. ϕ(D̄,τ̄,i) is finite

The proof for this lemma follows by induction over the recursive definition
of safe formula.

The safety conditions relevant for this thesis are listed in Figure 2.3. These
were already part of VeriMon before this thesis was started.

safe formula (¬ϕ) ⇔ f ree(ϕ) = ∅ ∧ safe formula(ϕ)

safe formula (ϕ ∨ ψ) ⇔ f ree(ϕ) = f ree(ψ) ∧
safe formula (ψ) ∧ safe formula (ϕ)

safe formula (ϕ ∧ ψ) ⇔ safe formula(ϕ) ∧ (

safe assignment ( f ree(ϕ), ψ) ∨
safe formula (ψ) ∨
f ree(ψ) ⊆ f ree(ϕ) ∧ (

is constraint(ψ) ∨
∃ψ′.ψ = ¬ψ′ ∧ safe formula(ψ′)

)

)

safe formula (ϕ SI ψ) ⇔ safe formula(ψ) ∧ f ree(ϕ) ⊆ f ree(ψ) ∧ (

safe formula(ϕ) ∨
∃ϕ′.ϕ = ¬ϕ′ ∧ safe formula(ϕ′)

)

safe formula (ϕ UI ψ) ⇔ safe formula(ψ) ∧ f ree(ϕ) ⊆ f ree(ψ) ∧ (

safe formula(ϕ) ∨
∃ϕ′.ϕ = ¬ϕ′ ∧ safe formula(ϕ′)

)

Figure 2.3: The equations of safe formula relevant for this thesis. Definitions
with adapted notation taken from VeriMon [6]

The details of safe assignment and is constraint are omitted as they are
not relevant for this thesis. In a nutshell, these predicate hold on non-
recursive formulas of the form of an equality or the negation of an equality.
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The concept of future boundedness was already introduced in Section 1.3 as
the property of a formula only imposing conditions on a finite amount of
time points in the future. The only operator that reaches into the future for
more than just one time point is the Until operator. Thus the definition can
be made more formal:

Definition 2.6 A formula ϕ is called bounded, if all occurrences of Until
operators in ϕ are over bounded intervals [12].

Both, boundedness and safety are requirements on a formula so that it can
be monitored. Hence we define monitorability as follows:

Definition 2.7 A formula ϕ is called monitorable if and only if it is safe and
bounded.

2.5 Progress

Since MFOTL includes temporal operators that can impose conditions on the
future, it is not always possible to compute ϕ(D̄,τ̄,i) directly after having seen
a finite prefix of the trace up until the time-point i. As an example, the table
ϕ(D̄,τ̄,i) for the formula ϕ = #[0,∗) ψ for some atomic predicate ψ can only
be outputted after reading (Di+1, τi+1) which might not be available yet. In
other words, for a given formula and time point, the monitor can only make
a certain amount of progress.

Definition 2.8 The progress progA(ϕ, i) of a monitoring algorithm A on a
formula ϕ at a time point i is defined as the number of time points j for
which the value ϕ(D̄,τ̄,j) can be computed after reading the first i time-points.

2.6 Formalization in Isabelle / HOL

In Isabelle / HOL, the introduced concepts are formalized using various
functions and data types. As they closely follow the just given definitions
only the relevant differences are mentioned here. Even though the intervals
introduced in section 2.2 could be modelled by a simple pair [a, b) where
a ∈N, b ∈N∪ {∞}, the intervals are modelled more generally in VeriMon
to allow for potential future extensions of intervals beyond a pair of natural
numbers. In the formalization the intervals are modelled as tuples (memL,

memR, bounded) where the functions
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memL : N 7→ {True, False}
memR : N 7→ {True, False}
bounded ∈ {True, False}

satisfy the following equations:

∃m ∈N. memL(m) ∧ memR(m) (2.1)
∀ l, m ∈N. memL(l)→ l ≤ m→ memL(m) (2.2)
∀m, r ∈N. memR(r)→ m ≤ r → memR(m) (2.3)

bounded↔ ∃m.¬memR(m) (2.4)

Informally, memL checks whether the input is at least as large as the lower
bound whereas memR checks whether the input is at most of the size of the
upper bound. Equations 2.2 and 2.3 characterize the transitivity of these
relations. Equation 2.1 guarantees that intervals are non-empty whereas
Equation 2.4 defines the last component of the tuple to be True if and only if
the interval is bounded.

An interval [a, b + 1) can then be represented by the tuple{
(λi. i ≥ a, λi. i ≤ b, False) if b = ∞
(λi. i ≥ a, λi. i ≤ b, True) if b 6= ∞

where the notation λi. f (i) for a function f : X 7→ Y, some X, Y and an
argument i ∈ X denotes the function taking an argument i from X and
returning f (i) ∈ Y.
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Chapter 3

Translating Dual Operators

As already mentioned in the Introduction in Section 1.5, both Trigger and Re-
lease are inherently unsafe. With the semantics of MFOTL formulas being de-
fined in section 2.2 and having seen the relevant equations for safe formula

in Figure 2.3, the reason immediately becomes apparent: Trigger and Release
have a top-level negation and negated formulas are in general only safe if
they do not contain any free variables and are safe by themselves (see Figure
2.3). However, this restriction is stronger than it could be.

An approach to deal with the inherent unsafety was described by Basin et
al. ([12], Section 4). The idea is to require that zero is part of the interval, in
addition to further syntactic conditions resembling those of Since and Until.
This is already better but if possible it would be beneficial to allow intervals
not including zero as well.

The conditions described in this thesis are derived from the approach sug-
gested by M. Raszyk: Expressing the two operators with the already sup-
ported operators Since and Until. The safety conditions can then be derived
by evaluating safe formula for the rewritten formula.

Now the structure of this chapter is outlined. First the semantics of Trigger
and Release are derived on the basis of their definition and the semantics
of MFOTL. Next, the translated formulas along with their intuition are
presented. On the basis of these rewrite rules, the safety conditions for
Trigger and Release are then derived.

3.1 Semantics

3.1.1 Trigger

We start off by looking at Trigger. By definition 2.2, the following holds

ϕ TI ψ = ¬ ((¬ ϕ) SI (¬ ψ))
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whereas by the semantics 2.3 it holds that

(D̄, τ̄, v, i) |= (¬ϕ) ⇔ (D̄, τ̄, v, i) 6|= ϕ

(D̄, τ̄, v, i) |= (ϕ SI ψ) ⇔ ∃j ≤ i. (τi − τj) ∈ I ∧ (D̄, τ̄, v, j) |= ψ ∧
(D̄, τ̄, v, k) |= ϕ, for all k ∈N with j < k ≤ i

By plugging the definition into the semantics, one obtains

(D̄, τ̄, v, i) |= (ϕ TI ψ) ⇔ (D̄, τ̄, v, i) 6|= ((¬ ϕ) SI (¬ ψ))

⇔ ¬(∃j ≤ i. (τi − τj) ∈ I ∧
(D̄, τ̄, v, j) |= ψ ∧
(D̄, τ̄, v, k) |= ϕ for all k ∈N

with j < k ≤ i)

⇔ ∀j ≤ i. (τi − τj) ∈ I →
(D̄, τ̄, v, j) |= ψ ∨
(D̄, τ̄, v, k) |= ϕ for some k ∈N

with j < k ≤ i

(3.1)

The semantics can be described as follows: For all time points j before the
current one (i) where the difference of timestamps is within the interval I, the
following condition has to hold: Either ψ holds at j or there exists a strictly
greater time point k > j, less than or equal to the current one (k ≤ i), where
ϕ holds. The intuition for the name Trigger comes from the following: Either
ψ holds in the whole interval or there exists a time point within the interval
where ψ does not hold. In the latter case for the Trigger operator to still be
satisfied, there has has to exist a later time point where ϕ holds. After (and
including) the last time point (in increasing time point order) where ϕ was
satisfied, ψ must hold at all time points within the interval for the Trigger
semantics to be satisfied. Hence one can think of this last time point where
ϕ holds as triggering the afterwards continuous satisfaction of ψ within the
interval.

3.1.2 Release

Now an analogous derivation is performed for Release using its definition
(2.2) and the semantics of MFOTL (2.3):

18



3.2. Rewriting

(D̄, τ̄, v, i) |= (ϕ RI ψ) ⇔ (D̄, τ̄, v, i) 6|= ((¬ ϕ) UI (¬ ψ))

⇔ ¬(∃j ≥ i. (τj − τi) ∈ I ∧
(D̄, τ̄, v, j) |= ψ ∧
(D̄, τ̄, v, k) |= ϕ for all k ∈N

with i ≤ k < j)

⇔ ∀j ≥ i. (τj − τi) ∈ I →
(D̄, τ̄, v, j) |= ψ ∨
(D̄, τ̄, v, k) |= ϕ for some k ∈N

with i ≤ k < j

(3.2)

The semantics can be interpreted analogously to the one for Trigger: All
time points within the interval must satisfy ψ up until and including the first
occurrence of a time point where ϕ is satisfied and throughout the entire
interval if there is none.

3.2 Rewriting

According to the semantics of Trigger and Release, they are both satisfied
if there exists no time point within the interval. Hence in that case there is
no hope to obtain a safe formula that is semantically equivalent (unless the
formula is closed, i.e., without any free variables) and we restrict ourselves to
the case where there is a time point within the interval. This means finding
formulas equivalent to ( �I True) ∧ (ϕ TI ψ) and ( �I True) ∧ (ϕ RI ψ) for
formulas ϕ and ψ and an interval I. If the interval I includes zero, then the
formulas �I True and �I True are trivially satisfied and could be dropped
since the time point for which the formula is evaluated is always included
in the interval. An alternative approach would be to replace �I True and
�I True by a safe formula α satisfying ( f ree(ϕ) ∪ f ree(ψ)) ⊆ f ree(α). This

ensures that in case the interval I does not contain any time points, the set of
satisfying assignments to the free variables is already restricted to be finite
by the safe formula α.

Before presenting formulas equivalent to Trigger and Release, alternative
formulas for Historically and Eventually are presented as they will be used
as building blocks when translating the operators Trigger and Release. When
looking at their definitions (see Figure 3.1) in terms of Once and Eventually
rather than Trigger and Release, it becomes clear that we are facing the
same issue as with Trigger and Release: There is a top-level negation which
imposes very strong safety conditions if the definition was used directly.

19



3.2. Rewriting

�I ϕ := ¬ ( �I (¬ϕ))

�I ϕ := ¬ ( �I (¬ϕ))

Figure 3.1: Alternative definitions of Historically and Always

3.2.1 Historically

We begin with the case where the interval contains zero. Then it is possible
to distinguish the cases whether there exists a time point outside the inter-
val [0, b). If there exists one, the formula ϕ S[b,∞)

(
#[0,∞) ϕ

)
captures the

semantics of �I ϕ as 0 ∈ I guarantees the existence of a time point within
the interval. If there is no time point outside the interval, then ϕ has to hold
since the first entry in the temporal structure. The first entry in the temporal
structure can be targeted with ¬

(
 [0,∞) True

)
as it is the only time point

without a predecessor.

Definition 3.1 Let f irst be the MFOTL formula ¬
(
 [0,∞) True

)
.

Lemma 3.2 f irst is only satisfied at the first time point in a temporal struc-
ture. More formally:

(D̄, τ̄, v, i) |= f irst⇔ i = 0

The proof of this directly follows from the semantics in Definition 2.3.

Historically for an interval of the form [0, b) can be expressed as

If b 6= ∞, then

�[0,b) ϕ =
(

ϕ S[b,∞) (#[0,∞] ϕ)
)

︸ ︷︷ ︸
There exists a time point outside [0,b)

∨
(

ϕ S[0,∞) (ϕ ∧ f irst)
)

︸ ︷︷ ︸
All earlier time points are in [0,b)

If b = ∞, then

�[0,b) ϕ =
(

ϕ S[0,∞) (ϕ ∧ f irst)
)

If zero is not part of the interval, one has to be more cautious as the same
issue as in Trigger and Release resurfaces again: If there exists no time point
within the interval, Historically is trivially satisfied and hence cannot be safe.
Thus, analogously to Trigger and Release, we seek a formula semantically
equivalent to �[a,b) ϕ∧�[a,b) ϕ for a > 0. (Note that in the case of Historically
it does not matter whether we use �[a,b) ϕ or �[a,b) True as in conjunction
with Historically the two are equivalent)
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If the interval is unbounded, i.e. b = ∞, then an analogous approach as in
the case [0, ∞) can be used because ϕ must hold since the first time point.
The only difference is that the last time point in the interval [a, ∞) should be
targeted and ϕ S[0,∞) (ϕ ∧ f irst) has to be shifted by combining a � (Once)
and a  (Previous) operator.

�[a,∞) ϕ ∧�[a,∞) ϕ = ( �[a,∞) ϕ) ∧
(

�[0,a)

(
 [0,∞)

(
ϕ S[0,∞) (ϕ ∧ f irst)

)))
The last remaining case, the one of a bounded interval [a, b) with a > 0 and
b 6= ∞ is much more tricky. Although the use of a negation in general is
dangerous if the resulting formula should be safe, M. Raszyk has come up
with the following trick:

�[a,b) ϕ ∧�[a,b) ϕ =
(

�[a,b) ϕ
)
∧
(
¬
(

�[a,b)

((
�[0,b−a) ϕ

)
∨
(

�[0,b−a) ϕ
))
∧ ¬ϕ

))
First it is important to note that this formula is indeed safe. According to
the equations in Figure 2.3 and Lemma 2.5, a conjunction with a negated
right hand side is safe if the negated subformula is safe itself and the free
variables of the negated subformula are included among the free variables of
the left-hand side of the conjunction which is the case here.

Next an informal argument for the semantic equivalence is given. Apart from
the left hand side of the inner conjunction,

((
�[0,b−a) ϕ

)
∨
(

�[0,b−a) ϕ
))

, the
formula is exactly the definition of Historically in terms of Once (see Figure
3.1). Hence if

((
�[0,b−a) ϕ

)
∨
(

�[0,b−a) ϕ
))

is always satisfied within the
interval, then the two formulas are semantically equivalent.

ij

b-a b-a

a

b

I

Figure 3.2: Example for the translated formula for Historically in the case
where the interval is bounded and a > 0 is given

Let i be the current time point where the formula is evaluated at. It is given
that the time point j where the subformula

((
�[0,b−a) ϕ

)
∨
(

�[0,b−a) ϕ
))

is
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evaluated at, is located inside the interval I = [a, b) as it is the argument to
a Once with said interval I. Moreover there exists a time point k inside the
interval where ϕ is satisfied. As both time points lie within the interval, the
one satisfying ϕ must be within the range of the length of interval (b− a) for
any time point j inside the interval. An example of this scenario is depicted
in Figure 3.2.

Now this rewrite formula would be correct but because of the actual for-
malization of intervals (described in section 2.6), the interval [0, b − a)
cannot be efficiently computed from the interval [a, b). One can notice
that the idea still works, if the larger interval [0, b) is used instead, i.e.((

�[0,b) ϕ
)
∨
(

�[0,b) ϕ
))

. Given [a, b), this interval can be constructed in the
formalization by simply setting the function memL to the constant function
returning True. As it is not clear how the interval [0, b− a) can be computed
efficiently, we use this less restrictive formula instead.

With these four rewrite formulas, an alternative Historically operator �′I ϕ
that for some formula ϕ and interval I is semantically equivalent to �I ϕ ∧
�I ϕ can be defined. It is safe exactly when the subformula ϕ is which is the
best one could hope for without rewriting the formula ϕ itself.

Definition 3.3 The unary temporal operator �′I ϕ for the interval [a, b) is
defined as follows:

If a = 0∧ b 6=∞, then

�′[0,b) ϕ =
(

ϕ S[b,∞) (#[0,∞] ϕ)
)
∨
(

ϕ S[0,∞) (ϕ ∧ f irst)
)

If a = 0∧ b =∞, then

�′[0,b) ϕ =
(

ϕ S[0,∞) (ϕ ∧ f irst)
)

If a > 0∧ b =∞, then

�′[a,∞) ϕ =
(

�[a,∞) ϕ
)
∧
(

�[0,a)

(
 [0,∞)

(
ϕ S[0,∞) (ϕ ∧ f irst)

)))
If a > 0∧ b 6=∞, then

�′[a,b) ϕ =
(

�[a,b) ϕ
)
∧
(
¬
(

�[a,b)

((
�[0,b) ϕ

)
∨
(

�[0,b) ϕ
))
∧ ¬ϕ

))

The formalization in Isabelle / HOL [6] proves that �′[a,b) ϕ is semantically

equivalent to ( �I ϕ) ∧
(
�[a,b) ϕ

)
:

Lemma 3.4 For any interval I ∈ I and any formula ϕ, the following equiva-
lence holds for any D̄, τ̄, v, i:
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(D̄, τ̄, v, i) |= ( �I ϕ) ∧ (�I ϕ)⇔ (D̄, τ̄, v, i) |= �′I ϕ

Moreover, the formalization also includes a proof for the following lemma:

Lemma 3.5 The formula �′[a,b) ϕ is part of the subset of safe formulas exactly
when ϕ is.

�′[a,b) ϕ is safe⇔ ϕ is safe

3.2.2 Always

Since formulas with an unbounded interval into the future cannot be moni-
tored, we restrict ourselves to the case of bounded intervals. For a > 0 the
task is tackled analogous to Historically but for a = 0 a different idea has
to be used as it is not clear how to target the ”last” time point. One can
make use of the fact that a temporal structure guarantees that the sequence
of timestamps will always grow beyond any bound. Assuming the interval is
not empty, there either is a timestamp within the interval [b, 2 · b− 1) mean-
ing

(
ϕ U[b,2·b−1)

(
 [0,∞) ϕ

))
must hold or there is none in there. If there are

no timestamps within the interval [b, 2 · b− 1), then ϕ must be satisfied up
until the time point where the next time point is at least b time units apart
from the last time point within the interval [0, b). The reason being that b− 1
is the greatest possible timestamp difference to the current timestamp that is
within the interval [a, b). Moreover if [b, 2 · b− 1) is empty, the next possible
timestamp has at least 2 · b− 1 units of time difference to the current one.
Hence the difference between the last time point within the interval [0, b)
and the first time point within [b, 2 · b− 1) is at least 2 · b− 1− (b− 1) = b
units of time. The two scenarios are depicted in Figures 3.3 and 3.4.

i j

[0, b) [b, 2·b-1)

Figure 3.3: Example of the case when the interval [b, 2 · b− 1) contains a time
point j.
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i l l’

[0, b) [b, 2·b-1)

Figure 3.4: Example of the case where the interval [b, 2 · b− 1] is empty. Time
points l and l′ represent the last entry in the interval [0, b) and the first entry
with a timestamp difference at last 2 · b− 1, respectively. Their distance is at
least b units of time.

The latter case can be captured by
(

ϕ U[0,b)

(
ϕ ∧

(
#[b,∞) True

)))
.

Analogous to definition 3.3, an alternative Always operator �′ is defined
which is semantically equivalent to � in conjunction with � and safe if its
argument is.

Definition 3.6 The unary temporal operator �′I ϕ for the bounded interval
[a, b), b 6= ∞ is defined as follows:

If a = 0, then

�′[0,b) ϕ =
(

ϕ U[b,2·b−1)

(
 [0,∞) ϕ

))
∨
(

ϕ U[0,b)

(
ϕ ∧

(
#[b,∞) True

)))
If a > 0, then

�′[a,b) ϕ =
(

�[a,b) ϕ
)
∧
(
¬
(

�[a,b)

((
�[0,b) ϕ

)
∨
(

�[0,b) ϕ
))
∧ ¬ϕ

))

It is proven in the formalization in Isabelle / HOL [6] that �′I ϕ and ( �I ϕ)∧
(�I ϕ) are semantically equivalent:

Lemma 3.7 For any interval I ∈ I and any formula ϕ, the following equiva-
lence holds for any D̄, τ̄, v, i:

(D̄, τ̄, v, i) |= ( �I ϕ) ∧ (�I ϕ)⇔ (D̄, τ̄, v, i) |= (�′I ϕ)

As for Historically, the formalization includes a proof about the safety:

Lemma 3.8 �′[a,b) ϕ is part of the subset of safe formulas exactly when ϕ is.

�′[a,b) ϕ is safe⇔ ϕ is safe
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3.2.3 Trigger

We begin by discussing the different cases of satisfactions for a Trigger
operator ϕ TI ψ for some formulas ϕ and ψ and an interval I ∈ I at some
time point i.

It is possible that there exists a time point within [0, a) where ϕ holds. This
immediately satisfies the semantics of Trigger (see Definition 3.1). This
condition directly corresponds to a once: �[0,a) ϕ.

Moreover if there is no time point within [0, a) where ϕ holds, there either is
a time point within I = [a, b) where ϕ is satisfied or there is none in [0, b).
Assuming there is a time point inside the interval I = [a, b) where ϕ holds,
let j be the latest such time point. Then ψ only has to hold at j and all later
time points up until the end of the interval. This can also be expressed with a
Since: ψ S[0,∞) (ψ∧ ϕ). But this condition is stronger than the one imposed by
Trigger as the semantics of Trigger only quantify over the time points within
the interval. Hence the time point where this just derived Since formula
should hold, must be shifted. This can be accomplished by combining a
Once with a Previous operator: Let the interval I be equal to [a, b). Then

�[0,a)

(
 [0,∞)(ψ S[0,∞) (ψ ∧ ϕ))

)
imposes the condition ψ S[0,∞) (ψ ∧ ϕ) on

the last entry within the interval I.

Finally, if there is no time point within the interval [0, b), the last remaining
way for the semantics of Trigger to be satisfied is if the right hand side ψ
holds at all time points within the interval I = [a, b). This part is semantically
equivalent to a Historically �I ψ.

Now of course this description is not even close to a formal proof but it
should give the reader an intuition where the translated formula comes from.
Next we define the translation operator ϕ T′I ψ that is semantically equivalent
to ( �I True) ∧ (ϕ TI ψ) and allows a relaxation of the safety conditions.

Definition 3.9 The binary MFOTL operator T′ for the interval [a, b) is defined
as follows:

If a = 0, then

ϕ T′[0,b) ψ =
(
�′[0,b) ψ

)
∨
(

ψ S[0,∞) (ψ ∧ ϕ)
)

If a > 0, then

ϕ T′[a,b) ψ =
(

�[a,b) True
)
∧((

�′[a,b) ψ
)
∨
(

�[0,a) ϕ
)
∨ ( �[0,a)

(
 [0,∞)

(
ψ S[0,∞) (ψ ∧ ϕ)

)))
Note the usage of �′I instead of �I .
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The operator ϕ T′I ψ can be proven to be semantically equivalent to ϕ TI ψ
conjoined with Once:

Lemma 3.10 For any interval I ∈ I and any formulas ϕ and ψ, the following
equivalence holds for any D̄, τ̄, v, i:

(D̄, τ̄, v, i) |= ( �I True) ∧ (ϕ TI ψ)⇔ (D̄, τ̄, v, i) |= (ϕ T′I ψ)

This lemma is proven in the formalization in Isabelle / HOL [6].

3.2.4 Release

An analogous intuition applies to Release as well since the semantics are
symmetric to the ones for Trigger. Please note that the case of an unbounded
interval is ignored as it is not possible to monitor it anyway.

A formula ϕ R[a,b) ψ is satisfied if either ψ is satisfied in the whole interval
[a, b), ψ U[0,∞) (ψ ∧ ϕ) holds at the smallest time point inside the interval or
there exists a time point within [0, a) where ϕ is satisfied. Hence the operator
R′ is analogously defined to T′.

Definition 3.11 The binary MFOTL operator R′I for the bounded interval
I = [a, b) is defined as follows:

If a = 0, then

ϕ R′[0,b) ψ =
(
�′[0,b) ψ

)
∨
(

ψ U[0,∞) (ψ ∧ ϕ)
)

If a > 0, then

ϕ R′[a,b) ψ =
(
�′[0,b) ψ

)
∨
(

�[0,a) ϕ
)
∨
(

�[0,a)

(
#[0,∞)

(
ψ U[0,∞) (ψ ∧ ϕ

)))
Again, note the usage of �′I instead of �I .

And once again, the following lemma is proven in the formalization in
Isabelle / HOL [6]:

Lemma 3.12 For any bounded interval I ∈ I and any formulas ϕ and ψ, the
following equivalence holds for any D̄, τ̄, v, i:

(D̄, τ̄, v, i) |= ( �I True) ∧ (ϕ RI ψ)⇔ (D̄, τ̄, v, i) |= (ϕ R′I ψ)
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3.3. Deriving safety conditions

3.3 Deriving safety conditions

Based on the definitions of the operators T′ and R′ it is now possible to derive
the conditions under which their evaluation is safe by reducing them to the
cases of safe formula given in Figure 2.3. As the two operators are defined
symmetrically with respect to Since and Until and the safety conditions for
Since and Until are the same, the safety conditions derived for both Trigger
and Release are the same as well. The conditions are abstracted by the
following predicate on two formulas and an interval:

Definition 3.13 Let safe dual be the predicate defined by

safe dual(ϕ, I, ψ) =



safe formula(ψ) ∧ if 0 ∈ I
f ree(ϕ) ⊆ f ree(ψ) ∧ (
safe formula(ϕ) ∨
(∃ϕ′. ϕ = ¬ϕ′ ∧ safe formula (ϕ′))

)

safe formula(ϕ) ∧ otherwise
safe formula(ψ) ∧
f ree(ϕ) = f ree(ψ)

Using this definition, the safety conditions for the operators T′ and R′ are
given by the following lemma.

Lemma 3.14 The evaluation of the operators T′ and R′ is safe, given safe dual

is satisfied with the following arguments:

∀ϕ I ψ. safe dual(ϕ, I, ψ)→ safe formula(ϕ T′I ψ)

∀ϕ I ψ. safe dual(ϕ, I, ψ)→ safe formula(ϕ R′I ψ)

Note that these are implications, not equivalences. For an equivalence
safe dual would have to allow the additional cases safe assignment( f ree(ψ), ϕ)
and is constraint(ψ). For simplicity these cases are omitted and can be
added in future work.

The proof of this lemma follows from definition 3.13 and the cases of
safe formula given in Figure 2.3. It is also been verified using Isabelle
/ HOL.

Now we informally argue why these safety conditions seem reasonable. As
already discussed, the two operators are satisfied if the right-hand side ψ
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holds at all time points within the interval. Moreover if zero is not part of
the interval I = [a, b), one can see in the definitions of T′ (Definition 3.9) and
R′ (Definition 3.11) that the satisfaction of the left-hand side ϕ in the interval
[0, a) suffices for the respective operator to be satisfied. Thus in the case of
0 /∈ I it is for both subformulas possible to cause the operator to be satisfied
independent of the other subformula. As a result, the set of free variables of
the two subformulas must be the same. Assuming it was not, at least one
subformula α ∈ {ϕ, ψ} would have a free variable x that is not part of the
set of the free variables of the other subformula β ∈ {ϕ, ψ}\{α}. In case β
then causes the operator to be satisfied, any value can be assigned to x and
since x is not an element of f ree(β), the operator would still be satisfied. This
would of course lead to an infinite table and hence a contradiction to Lemma
3.14. Hence both subformulas must have the same set of free variables and
because the definition of T′I does not apply rewriting to the subformulas
recursively they both must be safe as well.

If 0 ∈ I, the safety conditions can be relaxed as the satisfaction of the left-
hand side ϕ alone cannot cause the operator to be satisfied and hence it
suffices for the set of free variables to be a subset and it is also possible to
allow a negated formula on the left-hand side.

3.4 Formalization

This section describes the formalization in Isabelle and hence the properties
of the exported code using the translated formulas.

In the previous sections semantically equivalent formulas to Trigger and
Release were derived which resulted in looser safety conditions than the
predicate safe formula would have allowed based on their definition. By
translating the operators to the semantically equivalent formulas, they can
now be monitored by VeriMon under the just derived safety conditions
without many additional changes.

The idea originally was to extend the definition of the predicate safe formula

to include the cases ( �I True)∧ (ϕ TI ψ) for formulas ϕ, ψ and interval I given
the safety conditions described in section (3.3) are satisfied.

Detecting such a formula would require deep pattern-matching, in particular
because True is not part of the defined formula data type. Hence we decided
that the evaluation of Trigger and Release operators that do not occur in
a conjunction with a safe formula containing all the free variables of the
Trigger or Release operators are only allowed if zero is part of their interval.
The evaluation of Trigger and Release over intervals excluding zero are then
allowed under a conjunction where the degenerate case of the interval not
containing a time point can be handled as well.
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In particular, the definition of safe formula for conjunctions is extended to

safe formula (ϕ ∧ ψ) ⇔ safe formula(ϕ) ∧ (

safe assignment ( f ree(ϕ), ψ) ∨
safe formula (ψ) ∨
f ree(ψ) ⊆ f ree(ϕ) ∧ (

is constraint(ψ) ∨
∃ψ′.ψ = ¬ψ′ ∧ safe formula(ψ′) ∨
∃ϕ′ I ψ′.ψ = ϕ′ TI ψ′ ∧ safe dual(ϕ′, I, ψ′)︸ ︷︷ ︸

This part is new, compare to Figure 2.3

∨

∃ϕ′ I ψ′.ψ = ϕ′ RI ψ′ ∧ safe dual(ϕ′, I, ψ′)︸ ︷︷ ︸
This part is new, compare to Figure 2.3

)

)

whereas the definition of safe formula is extended by the following two
cases:

safe formula (ϕ TI ψ) ⇔ 0 ∈ I ∧ safe dual(ϕ, I, ψ)

safe formula (ϕ RI ψ) ⇔ 0 ∈ I ∧ safe dual(ϕ, I, ψ)

Note that the actual definition in the formalization is slightly different for
the case of Release. The reason being that no specialized algorithm is
developed for Release and all occurrences of the operator are translated
to the semantically equivalent formulas. Thus the safety conditions for
Release are defined recursively on the translated formulas which allows for
easier (inductive) proofs in Isabelle / HOL.

So far we have only shown formulas semantically equivalent to ( �I True) ∧
(ϕ TI ψ) and ( �I True) ∧ (ϕ RI ψ) for some formulas ϕ, ψ and an interval I,
not formulas equivalent to α ∧ (ϕ TI ψ) and α ∧ (ϕ RI ψ) for some formula α.

Fortunately, the operators T′ and R′ can be easily adapted to this case:

Lemma 3.15 For any D̄, τ̄, v, i, the conjunctions of the dual operators Trigger
and Release with a formula α are semantically equivalent to the following
disjunctions:

(D̄, τ̄, v, i) |= α ∧ (ϕ TI ψ)⇔ (D̄, τ̄, v, i) |= (α ∧ ¬ ( �I True)) ∨
(
α ∧

(
ϕ T′I ψ

))
(D̄, τ̄, v, i) |= α ∧ (ϕ RI ψ)⇔ (D̄, τ̄, v, i) |= (α ∧ ¬ ( �I True)) ∨

(
α ∧

(
ϕ R′I ψ

))
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3.4. Formalization

Moreover the two translated formulas are safe given the original conjunctions
were. The proof of this lemma directly follows from a case distinction on
whether the interval contains a time point or not.

These definitions then allow the extension of the monitoring algorithm.
Instead of using a custom data-structure to monitor the operator, the original
monitoring algorithm is invoked on the translated formulas.
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Chapter 4

Direct Evaluation of Trigger

Instead of translating the operators to semantically equivalent formulas one
can design a specialized algorithm in order to evaluate them as it was done
for the other operators that are supported by VeriMon [11, 24].

Due to the time constraints given for this thesis, no specialized algorithm
is developed for Release, just one for Trigger. The core ideas are heavily
inspired by the semantically equivalent formulas derived in Chapter 3 (see
Definition 3.9) and the specialized algorithm designed for the evaluation of
Since [11].

The interface of the specialized monitoring algorithm for Trigger is described
by the locale (an interface in Isabelle / HOL) mtaux. It consists of three
functions init mtaux, update mtaux and result mtaux analogous to the
interface of msaux, the locale for evaluating the operator Since [11]. The types
of the three functions are listed below.

init mtaux :: args⇒ mtaux
update mtaux :: args⇒ ts⇒ table⇒ table⇒ mtaux ⇒ mtaux
result mtaux :: args⇒ mtaux ⇒ nat set× table

In contrast to mtaux, the interface of msaux is more refined. Namely the
function performing the update of the data-structure is split into multiple
stages.

The parameter args contains static information independent of the trace
required for the initialization and evaluation of the data-structure such as
the interval I or the set of free variables of the left- and the right-hand side
of ϕ TI ψ for some formulas ϕ and ψ. The details are omitted.

The type ts stands for timestamp and is an abbreviation for a natural num-
ber, nat = N. The type table corresponds to a finite table containing all
satisfying assignments to the free variables (tuples) as described in Section
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2.3. The function init mtaux initializes the data-structure whereas the func-
tion update mtaux updates the data-structure given a new entry of the trace
where ts is the timestamp and the two tables correspond to the two safe
subformulas of the Trigger operators. If the left-hand side is a negation then
the finite table for the left-hand side corresponds to the subformula of the
negation. Finally the result of the function result mtaux encodes the set of
tuples satisfying the Trigger operator.

The major difference to the interface of msaux is that result mtaux not only
outputs the table of satisfying assignments to the free variables but also the
set of free variables this table is over. By having the set of free variables the
table is over dynamic, it is possible to return the table for the closed formula
True. Hence, in case the interval does not contain any time points, this table
can be returned which conveys the information that the operator is trivially
satisfied.

4.1 Correctness

The way the correctness of the algorithm is shown follows the approach used
to prove the correctness of msaux, the locale describing the evaluation of
Since: An invariant is defined that is initially established by init mtaux and
is preserved by the execution of update mtaux. Moreover it is shown that
the invariant guarantees that the function result mtaux outputs the results
described by the semantics of Trigger.

In the development of the optimized data-structure for Since, these properties
were formulated with respect to an existing data-structure [11, 24]. In contrast
to Since, there was no existing data-structure for the evaluation of Trigger
and hence these properties were formulated with respect to a non-executable
specification. More specifically, the invariant for the evaluation of a Trigger
operator ϕ TI ψ for some formulas ϕ, ψ and an interval I = [a, b) was written
with respect to a trivial data-structure: A list that would simply store all input
tables together with their associated timestamps as long as the timestamp’s
difference to the current one is less than b. Because this trivial data-structure
stores all data within the interval [0, b), the satisfying assignments to the free
variables for ϕ TI ψ can directly be described using the derived semantics
of Trigger (see Equation 3.1). Note that this description does not have to be
executable as this trivial data-structure is only used to prove the correctness
of the algorithm.

Let the predicate valid mtaux with the signature

valid mtaux :: args⇒ ts⇒ mtaux ⇒ (ts× table× table) list⇒ bool

be the invariant the locale mtaux should satisfy with respect to an instance of
the trivial data-structure with type ts× table× table, as just described. The
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first table corresponds to the set of satisfying assignments for ϕ (or the set of
satisfying assignments to ϕ′ if ϕ = ¬ϕ′ for some ϕ′) whereas the second to
the ones for ψ. The timestamp (ts) argument corresponds to the respective
timestamp.

Assumptions in the locale mtaux guarantee init mtaux establishes this in-
variant and that it is preserved after calling update mtaux with the new
timestamp nt, the set of tuples l satisfying ϕ (or the subformula of ϕ′ if
ϕ = ¬ϕ′ for some formula ϕ′) and the set of tuples r satisfying ψ at the new
time point:

valid init mtaux : safe args args⇒
valid mtaux args 0 (init mtaux args) []

valid update mtaux : nt ≥ t⇒
valid mtaux args t mtaux trivial list⇒
valid mtaux

args

nt

(update mtaux args nt l r mtaux)

((filter f I,nt trivial list) @ [(nt, l, r)])

where safe args checks whether the safety conditions described in Section
3.3 are satisfied. The function safe args does not exist in the formalization,
it is used as a shorthand in this thesis to abstract the underlying safety
conditions imposed on the arguments.

Some additional preconditions about the wellformedness of the tables are
omitted as they do not contribute to the understanding of the assumptions.

The function f I,nt filters the trivial data-structure to remove all entries with
timestamps differences with respect to the new timestamp nt that are no
longer in the interval [0, b). Moreover the at-symbol @ denotes list concatena-
tion meaning ((filter f I,nt trivial list) @ [(nt, l, r)]) corresponds
to trivial list being filtered and then the additional element (nt, l, r)

being appended.

The last assumption of the locale guarantees the validity of the results
returned:

valid mtaux args t mtaux trivial list⇒
result mtaux args mtaux = trigger results args t trivial list

33



4.2. Underlying Data-Structure and Invariant

where trigger results corresponds to a function describing the results of
the Trigger operator analogous to the semantics expressed in Equation 3.1.

4.2 Underlying Data-Structure and Invariant

In the state for an evaluation of ϕ TI ψ for some formulas ϕ, ψ and an interval
I = [a, b), the list of tables is split into two lists sorted by the timestamps:
data prev containing the tables with timestamps that are not in the interval
yet and data in containing the tables with timestamps that are within the
interval analogous to the state for Since [11]. What is different compared
to the lists in the optimized state for Since, is that the list data prev now
contains the tables for both subformulas. The list data in still contains just
the tables of the right-hand side ψ.

In addition, the state contains a mapping tuple in once that maps tuples
satisfying ϕ to the newest timestamp for which this tuple occurs in a table in
data prev. This is analogous to the mapping data in used in the optimized
state for Since with the difference that the mapping tuple in once is used
for the interval [0, a), not I = [a, b). When looking at definition 3.9 for
the general case, one can see that the set of keys of this mapping directly
corresponds to the tuples satisfying the subformula

(
�[0,a) ϕ

)
. Figure 4.1

shows an example how the contents of this mapping might change over time.
In the example shown, the Interval is [3, 6) meaning at every time point the
mapping tuple in once contains the tuples satisfying the atomic predicate
P inside the interval [0, 3).

tp ts database data prev tuple in once

0 1 {P(a), Q(c)} [{(1, {a}, {c})}] {a 7→ 1 }
1 2 {P(a), Q(a),

Q(b)}
[{(1, {a}, {c})},
{(2, {a}, {a, b})}]

{a 7→ 2}

2 3 {P(c), Q(a)} [{(2, {a}, {a, b})},
{(3, {c}, {a})}]

{a 7→ 2, c 7→ 3}

3 5 {Q(a), Q(c)} [{(3, {c}, {a})},
{(5, {}, {a, c})}]

{c 7→ 3}

4 6 {Q(a), Q(d)} [{(5, {}, {a, c})},
{(6, {}, {a, d})}]

{}

Figure 4.1: An example of the contents of tuple in once for the formula
P(x) T[3,6) Q(x) for the unary atomic predicates P and Q and tuples a, b, c, d.
The keys of tuple in once satisfy the formula �[0,3) P(x). The abbreviation
ts stands for timestamp and tp for time point
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At time points 0, 1 and 2 the mapping is updated for the tuples a and c
as the atomic predicate P is satisfied (element of the database) for said
tuples in the respective time points. At time points 3 and 4 the tuples a and
c are respectively removed from the mapping tuple in once because the
timestamp they are mapped to is at least 3 (upper bound of the interval) units
of time away in the past. If 0 is in the interval, then data prev will always be
empty and hence the mapping tuple in once will always be empty.

Moreover, the state also includes a mapping tuple since hist and a set
hist sat which is designed to compute the tuples satisfying the subformula(
�′[a,b) ψ

)
(see Definition 3.9). Similar to the mapping tuple since used in

the optimized state for evaluating a Since operator [11], tuple since hist

maps tuples to the smallest time point in data in since when all entries
with larger or equal time points in data in include said tuple in the table
corresponding to ψ (i.e. a given tuple satisfies ψ since that time point). The
set hist sat simply contains all tuples for which the time point assigned by
mapping tuple since hist is at most the time point of the oldest entry in
data in, i.e. ψ is satisfied for all time points inside the interval. Figure 4.2
depicts an example of how the contents of tuple since hist and hist sat

evolve over time for the shown example trace.

The depicted example (Figure 4.2) shows how contents of the mapping
tuple since hist and the set hist sat change during the evaluation of the
formula P(x) T[1,3) Q(x). Initially both of them are empty. At time point 1
with timestamp 4, the table from time point 0 with timestamp 3 now is in
data in because the difference between the current timestamp (4) and the
timestamp for time point 0 (3) is part of the interval [1, 3). The mapping
tuple since hist is updated to include the tuple b and points to the time
point 0 as all tables in data in after (and including) time point zero up to the
newest one in the interval (also time point zero in this case) include the tuple
b. In addition hist sat is updated because the time point tuple since hist

maps b to is at most equal to the oldest time point within the interval. At time
point 2, the entry of time point 1 with timestamp 4 enters data in as well
and tuple since hist is updated for a to point to time point 1. The reason
being the same as before: After (and including) time point 1 up to the newest
one in data in (1), the tuple a is included in all tables in data in. The same
holds for the tuple b but because we want the mapping to map to the earliest
time point where this condition is satisfied, its value for b is not updated.
The set hist sat remains unchanged as all tuples inside of it are part of the
new table in data in and there is no new tuple in tuple since hist that
maps to a time point that is at most equal to the time point associated with
the oldest entry in data in. The changes for the next few time points follow
the same reasoning. Note that the interval [1, 3) does not include 3 and thus
at time point 3 with timestamp 6, the difference to the entry with timestamp
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3 is not within the interval anymore and is thus removed from data in.

The last not covered subformula of the disjunction in the general case of
definition 3.9 is �[0,a)

(
 [0,∞)

(
ψ S[0,∞) (ψ ∧ ϕ)

))
. As described in section

3.2.1, the goal of this subformula is to require the formula
(

ψ S[0,∞) (ψ ∧ ϕ)
)

to hold at the newest time point inside the interval. To compute the tuples
satisfying this condition, the state additionally includes the set since sat

which simply contains all tuples satisfying this subformula. This is enough
because the interval is [0, ∞), otherwise a more complex data-structure like
msaux has to be used [11]. Figure 4.3 shows an example of how this set evolves
over time for a given trace. At time point 1 where the entry (3, {a}, {a}) is
moved to data in, the tuple a is added to since sat because the tuple is in
the intersection of the two sets. At time points 2 and 3, the tuple stays in
since sat because a is at both time points in the set associated with the right-
hand side of the Trigger operator of the entries moved to data in. Moreover
at time point 3 the tuple b is part of both sets contained in the entry moved
to data in resulting in b being added to since sat as well. At time point
4, the tuple a is removed because it is not element of the set corresponding
to the right-hand side of the Trigger operator that is contained in the entry
moved from data prev to data in.

There are some other properties stored in the mtaux state for keeping track
of the time points and optimizing the performance. Most of these details are
omitted in this thesis but some remarks are made in Chapter 5. For the sake
of performance data prev and data in are implemented as queues but in
this thesis we refer to them as lists. The initialization of the data-structure is
straight-forward: All sets, mappings and lists are initialized empty.

tp ts database data prev data in since sat

0 3 {P(a), Q(a)} [{(3, {a}, {a})}] [] {}
1 4 {P(b), Q(a)} [{(4, {b}, {a})}] [{(3, {a})}] {a}
2 5 {P(b), Q(a),

Q(b)}
[{(5, {b}, {a, b})}] [{(4, {a})},

{(3, {a})}
{a}

3 6 {Q(b)} [{(6, {}, {b})}] [{(5, {a, b})},
{(4, {a})}]

{a, b}

4 7 {} [{(7, {}, {})}] [{(6, {b})},
{(5, {a, b})}]

{b}

Figure 4.3: An example of the contents of since sat for the formula
P(x) T[1,3) Q(x) with the unary atomic predicates P and Q and tuples a, b.
The abbreviation ts stands for timestamp and tp for time point.
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The invariant valid mtaux describes the just given properties of the different
parts of the data-structure formally and additionally establishes a connection
to the trivial data-structure. The formal details are omitted.

4.3 Obtaining Results

From the description of the state given in Section 4.2, it follows that the set of
tuples satisfying the Trigger operator ϕ TI ψ can be obtained by computing the
union of the keys of tuple in once, the set hist sat and the set since sat.
Given the safety conditions described in Definition 3.13 under which this
locale is used, the set of free variables of the Trigger operator is always exactly
the set of free variables of ψ. In case there are no time points within the
interval, it is possible to simply return the table representing True (denoted
by {()}) as described in the beginning of Chapter 4. Hence the function
result mtaux is defined as follows.

if (is empty data in) then

({}, {()})
else

( f ree(ψ), Mapping.keys tuple in once ∪ hist sat ∪ since sat)

where {()} stands for the table representing True.

4.4 Updating State

Most of the work is done during updates to the data-structure. All mappings
and sets have to be updated in an invariant-preserving way. The update
functionality can be split into two parts: One for updating the data-structure
with respect to a new largest timestamp nt and one for adding the new entry
(nt, l, r), in particular the tables l and r to the data-structure.

First the former part is described as the second part then makes use of
similar concepts. As a first step, the list data prev is partitioned into two
lists: one denoted by data prev’ consisting of the elements with a timestamp
difference with respect to the new timestamp nt that is still smaller than
the lower bound of the interval (i.e. less than of a) and the rest denoted by
move. The list move now contains exactly all entries where the timestamp
differences to the second largest timestamp is less than a but the difference
to the new timestamp nt is not. Moreover the mapping tuple in once is
updated by removing all tuples mapping to timestamps that belong to the
just removed entries just like tuple in in msaux. In fact, the code for this
part is shared between msaux and mtaux. The list data prev’ is exactly the
one replacing data prev in the updated state.
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Next, the mapping tuple since hist and the sets hist sat and since sat

are updated. The data relevant for this update are the entries of the list
move. The list is iterated in the order the time points arrived in the temporal
structure and for every entry (t, l, r) in the list, the following updates are
performed:

1. The keys of the mapping tuple since hist are filtered to only include
tuples that are inside the table r, i.e. the table containing all tuples
satisfying ψ. As mentioned before, tuple since hist points to the
smallest time point since when ψ was continuously satisfied. Hence
if ψ is not satisfied at the newest time point inside the interval, the
mapping should no longer point to a time point.

2. The mapping tuple since hist is updated for all tuples (r \ Mapping.keys
tuple since hist) to point to t. This makes sure that if some tu-
ple satisfies ψ at the newest point inside the interval, the mapping
tuple since hist keeps track of this. If the mapping already con-
tained an entry for a given tuple in r, the mapping must not change
for said tuple as the chain of time points where ψ is satisfied already
started earlier for said tuple.

3. The set of tuples satisfying Historically inside the interval, i.e. the
tuples contained in the set hist sat, must of course satisfy ψ at the
time point corresponding to (t, l, r) as well. Hence the set hist sat

is intersected with r: hist sat∩ r. Note that this only filters out tuples
not satisfying Historically anymore, new tuples satisfying Historically
are added later.

4. Analogously to the set hist sat, since sat is also intersected with r.
In addition, all tuples being part of both tables, l and r, are added to the
set as they now satisfy the subformula

(
ψ S[0,∞) (ψ ∧ ϕ)

)
. The whole

update is expressed by (hist sat∩ r)∪ (l ./ r) where ./ denotes a join
of the two tables. If the left-hand side ϕ is a negation of some formula
ϕ′, l contains the tuples satisfying ϕ′ and an anti-join is performed. An
anti-join between l and r is well defined because the safety conditions
given in Definition 3.13 guarantee the set of free variables of ϕ to be a
subset of the ones of ψ.

The resulting mapping and sets are called tuple since hist’, hist sat’

and since sat’, respectively.

Next, the list move is now filtered to only contain entries that are within the
interval. This is necessary as it is possible that after some entry was added
to data prev, no new time points occur for a long time. The time difference
to the next timestamp then might already be larger then the upper bound
of the interval and thus these entries will never enter data in. The resulting
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list is called move’. The steps performed before must operate on move rather
than move’ because the following scenario is possible: Assume there is a
tuple a in since sat meaning the tuple satisfies

(
ψ S[0,∞) (ψ ∧ ϕ)

)
at the

newest time point that is inside interval. When updating the timestamp there
might be an entry for time point i that is no longer in data prev and has a
timestamp old enough to directly skip the interval (and thus data in and
move’). Assuming tuple a does not satisfy ψ at said time point i, using move’

instead of move will lead to an issue: In that case the set since sat is never
intersected with the entry skipping data in and thus after the update the
tuple a is still within the set since sat even though it might no longer satisfy
the formula

(
ψ S[0,∞) (ψ ∧ ϕ)

)
at the newest time point inside the interval.

Hence the invariant would be violated. Using move instead of move’ for the
updates described before is one way to circumvent this issue.

Afterwards, the list data in is partitioned into two additional lists: one
denoted by data in’ containing the elements with a timestamp whose dif-
ference to nt is still inside the interval I and the rest denoted by drop. The
list drop consists exactly of the entries previously being inside the interval
that now have to be dropped because the difference to the new timestamp nt

is no longer within the interval I.

After partitioning data in, the list move’ can be appended to data in’. The
order of operations could also be reversed here: One could first append move

to data in and then partition the resulting list but as this will result in an
additional append operation for entries that are immediately dropped again,
the former order was preferred. The resulting list data in’’ will replace
data in in the updated state.

Finally, the set hist sat’ is updated one last time. As it is possible that
Historically previously was not satisfied but now all time points where the
right-hand side was not satisfied are no longer in the interval, it is required
that these tuples are added. This set of tuples exactly corresponds to the
set of tuples for which tuple since hist now points to a time point less
or equal than the smallest time point inside data in. Because this set of
tuples is a subset of all tables inside data in, it suffices to iterate over the
table of the oldest entry in data in, lookup their corresponding value in
tuple since hist and check whether this time point is at most the oldest
time point whose timestamp is still in the interval.

In the special case where the list data in’’ is empty, i.e. there are no time
points within the interval, the mapping tuple since hist’ as well as the set
hist sat’ are simply emptied.

Let tuple since hist’’ and hist sat’’ denote the mapping and set where
(if necessary) the updates described in the last two paragraphs were applied.
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This is all that is needed to update the data-structure with respect to a new
timestamp nt in an invariant-preserving way. The new state consists of
data prev’, data in’’, tuple in once’, tuple since hist’’, hist sat’’

and since sat’.

Adding the two tables l and r with timestamp nt from the entry to the
state is now straight-forward: First it is checked whether zero is part of
the interval I. If it is, the new entry is appended to data in and the map-
ping tuple since hist as well as the two sets hist sat and since sat

are updated analogous to the way it is done for the entries moved from
data prev to data in. If zero is not part of the interval, the new entry is
appended to data prev and the tuples in r are mapped to nt in the mapping
tuple in once.

In the formalization, this whole procedure is proven to satisfy the described
assumption on the update in the locale mtaux.

4.5 Progress

The described algorithm computes the set of satisfying assignments to the
free variables of ϕ TI ψ for some formulas ϕ, ψ and an interval I at all time
points where the set of satisfying assignments to the free variables of ϕ and ψ
can be computed. Thus using this algorithm, the progress of ϕ TI ψ is equal
to the minimum progress of ϕ and ψ which is the same amount of progress
the Since operator achieves given the same two subformulas.

The translated formulas derived in Chapter 3 are not always capable of
making the same amount of progress, especially as the case of a general
interval for Historically includes an Eventually operator reaching into the
future. In the formalization it is proven that the specialized algorithm makes
at least as much progress as the translated formulas. The following lemma
states this more formally:

Lemma 4.1 LetM denote the monitoring algorithm VeriMon that evaluates
Trigger operators using the specialized algorithm described in this chapter.
Then the following inequality holds:

∀ϕ ψ I i.progM(ϕ T′I ψ, i) ≤ progM(ϕ TI ψ, i)

This lemma follows by plugging in the progress values for all operators and
simplifying the resulting expression.

4.6 Optimizations

Compared to the described algorithm, the formalization additionally includes
optimizations to make the exported code run faster. Some of them are
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highlighted in this section.

A simple optimization is to empty the set since sat’ in addition to the
mapping tuple since hist’ and the set hist sat’ if the list data in is
empty. This is not required because since sat’ is responsible for keeping
track of the tuples satisfying the formula

(
ψ S[0,∞) (ψ ∧ ϕ)

)
which is over

the unbounded interval [0, ∞). Nevertheless it is possible because of the
following reason: Assume there is a tuple a that previously was element
of since sat’ but was removed from it just because data in is empty. The
next time an entry is added to data in there are two possibilities: Either a is
element of the table containing the tuples satisfying the right hand side ψ or
not. If it is, then the tuple a also satisfies Historically and is thus part of the
results anyway. If a is not part of this table, then it is removed from the set
since sat’ anyway because of the update steps previously described. For
additional entries this property holds inductively.

Another optimization is to include an additional set in the state that is
exactly equal to Mapping.keys tuple in once. All updates performed on
the mapping are analogously performed on the set. This increases the
time required for an update by a constant factor but removes the necessity
to compute the mapping’s keys in result mtaux. Otherwise the function
Mapping.keys would iterate over the whole mapping tuple in once in order
to create the set and tuple in once contains every tuple satisfying the left-
hand side in the interval [0, a) where a is the lower bound of the interval
Trigger is evaluated over.

In contrast to these implemented optimizations there are also places where
optimizations are possible but not yet implemented. One missed opportunity
for optimization is for updating hist sat’. Recall that it suffices to look at
the tuples in the oldest entry in the list data in in order to find the new
tuples satisfying Historically. This iteration over the table would not be
required in cases where the oldest entry in data in does not change. This
could improve the runtime quite a bit if the tables are large and there are
many time points with the same timestamp.

Moreover it should be noted that for simplicity the operators Trigger (and
Release) are currently not supported in multiway-joins unless the interval
contains zero. There are planned extensions to VeriMon that will reduce the
required effort to support mtaux in multiway-joins significantly.
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Chapter 5

Performance Evaluation

In order to assess the performance of the specialized algorithm its running
time is compared to the running time of the translated formulas. The param-
eters l and n determining the interval length and the number of tuples in
the result are used to generate the inputs to the monitoring algorithm. With
respect to these two parameters, the asymptotic behaviours of the specialized
algorithm and the translated formulas are analyzed. First some implementa-
tion details related to the experiments are mentioned and then the different
experiments are described. Afterwards the results of the experiments are
presented and discussed.

5.1 Implementation

Some unverified parts of VeriMon are extended in order to support the
evaluation of the operators Trigger and Release. Namely the lexer and parser
are extended to include the two new operators. Moreover a new flag is added
to the unverified part that makes the monitor translate the Trigger operator
to the formulas derived in Chapter 3. This allows to compare the running
time of the specialized algorithm to the translated formulas. The translation
is done just before conjunctions are rewritten to multiway conjunctions and
is formally verified. Currently only top-level Trigger operators and Trigger
operators under a top-level conjunction are translated but it is relatively
straightforward to extend the translation to proceed recursively. Furthermore
M. Raszyk noted that in the development version of Isabelle / HOL new
code equations for faster set operations are in place and hence we used the
development version in order to extract the verified code.

Moreover we decided not to measure the running time of the whole moni-
toring algorithm but only the time spent in the function meval responsible
for evaluating the formula. This way reading the input files, setting up the
monitor and writing the results to the console is excluded from the measured
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time. In order to accomplish this, the generated OCaml code is manually
modified. The statement let t = Unix.gettimeofday () for some new
variable t is added before and after the part of the program we want to
measure. The function Unix.gettimeofday returns the current time in unix
time with ”resolution better than 1 second” [7].

5.2 Description of the Experiments

The performance evaluation is performed for different settings resulting
in multiple experiments. The varied parameters include the interval, the
number of free variables of the left-hand side of the formula and the pattern
of the input trace. The left-hand side is fixed to either be an atomic predicate
(the simplest type of formula dependent on the trace) with either one or two
free variables and possibly negated (A(x),¬A(x), A(x, y),¬A(x, y) for the
free variables x and y) or the closed formula False whereas the right-hand
side is always fixed to the binary predicate B(x, y) with the free variables x
and y. For the interval the following cases are considered: [0, ∞), [0, b), [a, ∞)
and [a, b) for some natural numbers a, b. The values of a and b are set so that
b− a is proportional to the parameter l. Note that not all combinations are
allowed by the safety conditions defined in Definition 3.13. For example if
the interval does not include zero the set of free variables of the left-hand
side must be the same as the set of free variables of the right-hand side
and a negated left-hand side is not allowed. Thus only the left-hand side
A(x, y) is used if zero is not in the interval. Moreover for intervals not
including zero, the updated safety conditions presented in Section 3.3 require
the evaluation under a conjunction. Thus instead of evaluating top-level
Trigger operators, the operators are evaluated under the conjunction with
the atomic predicate C(x, y) with the same set of free variables. The atomic
predicate C is never included in the input trace. This way, the algorithm
does not have to output any results and the experiments are able to finish
earlier. Note that the evaluation of the operator Trigger is not affected by this.
Furthermore the join with an empty table for C(x, y) is performed in constant
time, independent of the size of the other table. Hence the computation of
the join does not distort the performance evaluation.

In addition to a formula, the monitoring algorithm also requires a trace
as input. The length of the trace is also set dependent on l in a way that
guarantees that the whole interval fits in the generated trace. Inspired by the
derived formulas semantically equivalent to Trigger and Release (Definitions
3.9 and 3.11), the traces are generated in a way that guarantees the satisfaction
of one of the three disjuncts in the translated formula by a certain amount
of tuples. The number of distinct tuples is with high probability at least
equal to n because we uniformly draw n random integer assignments to
the free variables x and y from the interval [0, 109] where n ≤ 800 holds for
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all experiments performed and thus n2 � |[0, 109]| = 109 + 1. In addition,
at every time point, n additional random assignments to the free variables
of the left- and right-hand side are added to make the trace less uniform.
These random tuples can also increase the total number tuples in the result
but as they are completely random it is unlikely that any of the disjuncts in
Definition 3.9 besides Once is satisfied by chance. But in the case of the Once
disjunct, the result is actually much bigger: All time points before the interval
contain n additional random assignments making the expected number of
tuples satisfying the Once disjunct to be in the order of Ω(l · n). Since the
interval length is proportional to l, there are Ω(l) such time points.

For Trigger the three patterns Historically, Since and Once are generated
and for Release analogously the three patterns Always, Until and Eventually.
These cases correspond to the three subformulas in case of a bounded interval
not including zero in Definitions 3.9 and 3.11.

5.3 Results and Discussion

The experiments are executed on a MacBook Pro (Retina, 15-inch, Early
2013) running macOS Catalina (Version 10.15.7, build 19H1217) on a 2.7 GHz
Quad-Core Intel Core i7 CPU with access to 16 GB 1600 MHz DDR3 RAM.
All of the experiments are repeated ten times in order to reduce the impact
of the execution environment. The input files for the experiments, the scripts
to evaluate them and the resulting CSV files can be found on GitHub [2, 5].

First the running times of the monitor evaluating the translated formulas
for Trigger are compared to the running times of the specialized algorithm.
For this comparison all safe combinations of left-hand sides, intervals, and
trace patterns are evaluated using the translated formulas and also using
the specialized algorithm. The results of the experiments in the different
settings are shown in Table 5.1. The evaluated formulas are listed in the
column Formula whereas the column Pattern lists the underlying pattern used
in order to generate the trace. The columns Translated Formula and Specialized
Algorithm show the mean running time of VeriMon over the ten executions in
seconds when monitoring the respective formula on a trace with the pattern
listed in the same row. The standard deviations can be computed from the
raw data linked above using a provided script but they are omitted in the
table as they are negligible.

As noted in the caption of Table 5.1 it is important that neither l nor n stay
the same across all experiments. Thus the running times of the different
experiments are not comparable. But for every individual experiment, i.e.
a row, the running time using the translated formulas can be compared to
the running time of the specialized algorithm as they both originate from
the exact same input trace. The last column mtaux shows the portion of the
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Formula Trace Translated Specialized mtaux

Pattern Formula Algorithm

False T[0,∞) B(x, y) historically 2.91 1.95 0.87

since 1.95 1.24 0.45

¬A(x) T[0,∞) B(x, y) historically 6.22 2.85 1.07

since 3.89 1.94 0.63

A(x) T[0,∞) B(x, y) historically 6.81 2.86 1.03

since 5.36 2.05 0.72

¬A(x, y) T[0,∞) B(x, y) historically 6.27 2.93 1.09

since 4.05 2.05 0.65

A(x, y) T[0,∞) B(x, y) historically 6.44 2.88 1.02

since 5.33 2.11 0.72

False T[0,b) B(x, y) historically 5.54 1.9 0.78

since 3.91 1.24 0.47

¬A(x) T[0,b) B(x, y) historically 8.6 2.87 1.03

since 5.73 1.99 0.65

A(x) T[0,b) B(x, y) historically 9.12 2.7 0.9

since 7.68 2.07 0.73

¬A(x, y) T[0,b) B(x, y) historically 8.33 2.83 0.99

since 5.63 2.01 0.65

A(x, y) T[0,b) B(x, y) historically 9.23 2.76 0.92

since 7.83 2.14 0.74

A(x, y) T[a,∞) B(x, y) historically 22.8 1.09 0.62

since 22.81 1.05 0.63

once 22.54 0.99 0.62

A(x, y) T[a,b) B(x, y) historically 77.14 0.38 0.23

since 75.68 0.34 0.21

once 73.93 0.32 0.2

Table 5.1: Mean running times of VeriMon in seconds when monitoring the
formula ϕ TI B(x, y) with different left-hand sides on traces with different
patterns. Note that neither the length of the trace nor the number of tuples
in the output is the same across all experiments / rows.

46



5.3. Results and Discussion

running time using the specialized algorithm that is spent in the functions
interpreting the locale mtaux, i.e. in the evaluation of the Trigger operator. In
particular this excludes the evaluation of the atomic predicates.

Table 5.1 shows that the specialized algorithm is able to compute the set of
satisfying assignments to the free variables more efficiently than the trans-
lated formulas. The difference is much more pronounced for the experiments
where zero is not part of the interval (last six rows) and especially large if we
have a bounded interval not including zero (last three rows). This is not an
unexpected result as the translated formulas for the various types of intervals
are different. We remark that the translated formula for Historically for
bounded intervals not including zero in Definition 3.3 includes a subformula
that is just added in order to make the formula safe but is most-likely the
reason its evaluation takes much longer. Note that the translated formula in
this case collects a lot of tuples in order to (over-)approximate the result. Even
though this over-approximation is then refined to obtain the actual result, the
intermediate tables still have to be computed. The complexity is amplified
by the data distribution chosen for the experiments: The additional random
entries added to the time points lead to a large amount of tuples satisfying
Once and thus further increase the size of this over-approximation. A further
reason is mentioned later when discussing the asymptotic behaviour.

Next the results of the experiments assessing the specialized algorithm’s
asymptotic behaviour are presented. In order to measure the asymptotic
behaviour with respect to the parameters l and n the values 2l, 4l, 8l, 2n, 4n, 8n
and their combinations are analyzed. They represent an increase of the
parameters l and n by the respective factors. All numbers are rounded
to show two decimal places. The column ’time meval’ contains the mean
running times of the function meval in seconds whereas the column ’time
mtaux’ contains the mean running time (in seconds) that is spent in the locale
mtaux. The columns ’ratio’ show the factor the mean running times ’time
meval’ and ’time mtaux’ have increased relative to the previous row. As
before we omit the standard deviations as they are negligible (The provided
scripts can calculate them). Since the parameters are doubled between
consecutive rows, we expect the ’ratio’ columns to contain values close to 2 if
the running time increases linearly in the respective parameter, values close
to 4 if it increases quadratically, etc. All tables resulting from the asymptotic
experiments can be found on GitHub [2] and only a representative selection
is presented in this thesis. Note that the values of the parameters l and n
are not always the same for the baseline and they are show in the captions
of the tables. In the case of the specialized algorithm, the results are very
homogenous and just the two sample Tables 5.2 and 5.3 are listed.
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parameters time meval ratio time mtaux ratio

l 0.08 0.03
2l 0.17 2.09 0.07 2.27
4l 0.35 2.09 0.15 2.04
8l 0.72 2.05 0.31 2.08

n 0.08 0.03
2n 0.19 2.35 0.06 1.76
4n 0.37 1.96 0.12 2.17
8n 0.73 1.97 0.30 2.43

n, l 0.08 0.03
2n, 2l 0.40 4.95 0.12 3.54
4n, 4l 1.57 3.95 0.51 4.47
8n, 8l 6.05 3.85 2.49 4.84

Table 5.2:

n = 100, l = 100
Formula: False T[0,b) B(x, y)
Pattern: Historically

parameters time meval ratio time mtaux ratio

l 0.16 0.09
2l 0.35 2.25 0.20 2.31
4l 0.85 2.40 0.50 2.53
8l 1.99 2.35 1.24 2.46

n 0.16 0.09
2n 0.37 2.37 0.20 2.31
4n 0.84 2.25 0.54 2.73
8n 1.92 2.28 1.36 2.50

n, l 0.16 0.09
2n, 2l 0.88 5.57 0.49 5.73
4n, 4l 4.41 5.04 3.15 6.38
8n, 8l 22.65 5.14 18.01 5.72

Table 5.3:

n = 100, l = 100
Formula: A(x, y) T[a,∞) B(x, y)
Pattern: Since
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In both tables, the columns ’ratio’ for increasing l and n, respectively, contain
values around 2 meaning the running time increases by about a factor two
when doubling the respective parameter. The same is the case for all other
asymptotic experiments conducted with the specialized algorithm. Hence
the experiments suggest a linear asymptotic behaviour in both l and n when
keeping the other parameter fixed. In contrast, when the parameters l and
n are increased together, the running times increases superlinearly. The
values in the columns ’ratio’ are in these cases around the value 4 which
indicates a quadratic asymptotic behaviour. These results suggest that the
specialized algorithm’s runtime complexity with respect to l and n is not
in O (n + l) but rather in Ω (n · l). Due to the set operations used, there
are definitely additional logarithmic terms in the expression but no detailed
analysis of the asymptotic complexity is performed. The just described
trends are consistent over all conducted experiments. It was to expect that
the specialized algorithm is linear in n · l as this corresponds to the expected
input size. The trace contains at every time point in expectation Θ(n) tuples
and the described algorithm processes the whole input at some point. This is
comparable to the implementations for the operators Since and Until which
are also both linear in the input size.

One can also notice that the fraction time mtaux
time , i.e. the portion of the running

time that is spent in the locale mtaux is larger if the interval does not include
zero. A possible explanation is that the result is a larger set due to the Once
disjunct in the translated formula. Due to the data distribution chosen for the
experiments, there can be many distinct tuples appearing before the interval
that all have to be collected. If the interval contains zero, the Once disjunct is
not present in the semantically equivalent formula and hence less operations
have to be performed.

The asymptotic behaviour of the translated formulas is in some cases sim-
ilar to that of the specialized algorithm, in others the translated formulas
yield worse performance. In order to assess the asymptotic behaviour of
the translated formulas the same method was used as for the specialized
algorithm. Note that the input traces are not the same as the ones used for
the specialized algorithm because the absolute running times in some cases
were substantially larger and we wanted the experiments to terminate in a
reasonable amount of time. Hence the absolute running times of the two
sets of experiments cannot be compared but it is of course still possible to
assess the asymptotic behaviour. The meaning of the columns is the same
as before. For intervals including zero, the values in column ’ratio’ are close
to 2 and thus the results suggest a linear runtime complexity in both l and
n. Analogously to the specialized algorithm, the rows where both l and n
are increased at the same time suggest, that the running time is a term in
Ω (n · l) rather than O (n + l). The two sample Tables 5.4 and 5.5 for intervals
including zero are shown in this thesis.
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parameters time meval ratio

l 0.24
2l 0.50 2.04
4l 1.03 2.08
8l 2.07 2.01

n 0.24
2n 0.59 2.42
4n 1.32 2.25
8n 2.85 2.16

n, l 0.24
2n, 2l 1.20 4.95
4n, 4l 5.40 4.49
8n, 8l 23.10 4.28

Table 5.4:

n = 100, l = 100
Formula: False T[0,b) B(x, y)
Pattern: Historically

parameters time meval ratio

l 0.22
2l 0.47 2.10
4l 0.98 2.10
8l 2.02 2.06

n 0.22
2n 0.53 2.36
4n 1.17 2.23
8n 2.64 2.25

n, l 0.22
2n, 2l 1.07 4.82
4n, 4l 4.80 4.47
8n, 8l 21.25 4.43

Table 5.5:

n = 100, l = 100
Formula: A(x, y) T[0,∞) B(x, y)
Pattern: Since

Again it was to expect that the running time is linear in l · n (i.e. the running
time increases quadratically when doubling both) for the same reason as in
the case of the specialized algorithm: The evaluation of the operator Since is
linear in the input size and the trace contains Ω(l · n) tuples in expectation.

The results obtained when evaluating the translated formulas on intervals
including zero differ quite a bit from what can be observed when doubling
the parameter l for intervals excluding zero. Then the values in the column
’ratio’ are significantly larger than 2 and seem to indicate more of a quadratic
increase than a linear one. Moreover the running time definitely seems to
grow faster than quadratic when both l and n are doubled. This seems
reasonable as now the evaluation is not even linear in l anymore. In contrast
to these superlinear asymptotic behaviours, the numbers still make a linear
asymptotic behaviour in n seem plausible. The sample Tables 5.6 and 5.7 for
intervals excluding 0 are listed in this thesis. The worse asymptotic behaviour
in l is not unexpected. The implementation of the operator Since is linear in
its output size which in the case of an interval excluding zero is expected to be
in the order of Ω(n · l) for at least Ω(l) time points. The reason for this is the
effect of the chosen data distribution on the Once disjunct in the semantically
equivalent formula (see Definition 3.9). The interval size is proportional to
l and all tuples satisfying the right-hand side before the interval must be
outputted by the Since operator at every time point. Computing an output
of the size Ω(n · l) at Ω(l) time points results in an asymptotic running time
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complexity in Ω(n · l2) which can be observed by looking at the column ’ratio’
in Table 5.6 which contains values around 4 indicating a quadratic increase
in running time. In Table 5.7 the values in the column ’ratio’ also indicate
a superlinear increase reaching the described quadratic increase in the last
row. For intervals including zero, this is not observed as the size of the result
in this case is in expectation in the order O(n) because the Once disjunct is
not part of the translated formulas. On the other hand, in the specialized
algorithm the set of tuples satisfying the Once disjunct is not computed from
scratch at every time point due to the optimized way the keys of a mapping
are computed (see Section 4.6) and hence does not show a quadratic increase
in running time. It is important to note that if the output was printed to a
console or written to a file and that time was measured as well, it is to expect
that the specialized algorithm will show a similar asymptotic behaviour.

parameters time meval ratio

l 0.89
2l 3.80 4.26
4l 17.27 4.54
8l 73.00 4.23

n 0.89
2n 1.97 2.20
4n 4.37 2.22
8n 9.66 2.21

n, l 0.89
2n, 2l 8.56 9.58
4n, 4l 81.49 9.52
8n, 8l 762.28 9.35

Table 5.6:

n = 40, l = 40
Formula: A(x, y) T[a,b) B(x, y)
Pattern: Once

parameters time meval ratio

l 0.07
2l 0.19 2.72
4l 0.60 3.10
8l 2.49 4.15

n 0.07
2n 0.15 2.18
4n 0.41 2.65
8n 0.97 2.37

n, l 0.07
2n, 2l 0.47 6.59
4n, 4l 4.06 8.70
8n, 8l 35.28 8.68

Table 5.7:

n = 40, l = 40
Formula: A(x, y) T[a,∞) B(x, y)
Pattern: Since
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Similar observations can be made when looking at the running times of the
translated formulas for Release. The results of two experiments are shown
in Tables 5.8 and 5.9. The remaining Tables can once again be found on
GitHub [2]. The difference in whether the interval includes zero or not
is once again clearly visible in the asymptotic behaviour in l because the
evaluation of the Until operator is linear in the output size as well and the
same reasoning about the result size of the Once disjunct symmetrically
applies to the Eventually disjunct in the translated formulas for Release.

parameters time meval ratio

l 0.39
2l 0.81 2.08
4l 1.75 2.15
8l 3.62 2.06

n 0.39
2n 0.94 2.40
4n 2.13 2.26
8n 4.72 2.22

n, l 0.39
2n, 2l 1.96 5.00
4n, 4l 8.78 4.49
8n, 8l 39.79 4.53

Table 5.8:

n = 100 , l = 100
Formula: A(x) R[0,b) B(x, y)
Pattern: Until

parameters time meval ratio

l 1.09
2l 4.67 4.30
4l 20.39 4.37
8l 89.66 4.40

n 1.09
2n 2.40 2.21
4n 5.22 2.18
8n 11.57 2.22

n, l 1.09
2n, 2l 10.27 9.45
4n, 4l 97.52 9.49
8n, 8l 941.59 9.66

Table 5.9:

n = 40 , l = 40
Formula: A(x, y) R[a,b) B(x, y)
Pattern: Eventually
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Chapter 6

Conclusion

The approach of deriving safe formulas that are semantically equivalent to the
unsupported cases for the operators Trigger and Release gives good insight
on their safety conditions. In the case of Trigger it was possible to remove the
redundant and inefficient parts of the semantically equivalent formulas when
turning their evaluation into a specialized monitoring algorithm. It seems
likely that a similar approach could work for the operator Release as well
but due to the time constraints given for this thesis, this hypothesis has not
been tested. Moreover the semantically equivalent formulas turned out to be
a good reference for assessing the specialized algorithm’s performance. The
results of the performance evaluation were clearly in favour of the specialized
algorithm, especially in the cases of bounded intervals not including zero.
The experiments for assessing the asymptotic behaviour with respect to the
interval length (that is linked to the trace length) suggest that having the zero
in the interval is the deciding factor for achieving linear runtime complexity
with respect to the interval length in case of the translated formulas. A
different result was obtained for the specialized algorithm: The results
from the experiments assessing its asymptotic behaviour with respect to the
interval length always suggest a linear runtime complexity, independent of
whether zero is part of the interval. Based on the performed experiments,
the asymptotic behaviour with respect to the parameter n determining the
number of tuples in the result and the random noise in the trace seems to
be linear for both the translated formulas and the specialized algorithm,
no matter whether zero is in the interval or not. Moreover the translated
formulas and the specialized algorithm both show a non-linear increase in
their running time when the interval length and n are increased together.

The translated formulas for Trigger seem to perform pretty well for intervals
including zero, especially as the asymptotic behaviour in the performed
experiments seems to be linear when doubling just one of the parameters.
Nevertheless, the specialized algorithm is able to undercut their running

53



time in all performed comparison experiments and also shows a linear
runtime complexity when doubling just one of the parameters. Moreover
the specialized algorithm is in some cases able to make more progress (see
Definition 2.8) than the translated formulas meaning it can output some
results earlier. For these reasons the formalization in VeriMon uses the
specialized algorithm in order to evaluate the operator Trigger rather than
rewriting it to the respective semantically equivalent formula as it is done
for Release. Based on the performed experiments, the presented formulas
semantically equivalent to Release have similar asymptotic properties as the
ones semantically equivalent to Trigger: The linear runtime complexity with
respect to the interval size is only achieved in experiments evaluating Release
over an interval that includes zero.

The current formalization could be further extended to evaluate formulas
that are currently not safe. As mentioned in Section 3.3, the safety conditions
can be relaxed to allow certain additional cases such as formulas satisfying
safe assignment or is constraint occurring in temporal operators. More-
over the safety conditions derived in Section 3.3 require the left-hand side of
the Trigger operator to have the same set of free variables as the right-hand
side if zero is not in the interval. This property is directly derived from
the safety conditions of the translated formula but it could be loosened if
the left-hand side corresponds to a False and the Trigger operator thus to
a Historically. This is an operator of interest and thus a very likely future
extension to the specialized algorithm described in this thesis. Only a small
set of changes should be required, the major difficulty will probably be the
detection of the subformula False which currently is not part of the formula
data type and hence would require deep pattern matching as in the case
of True described in Section 3.4. An easier approach might be to include
Historically in the formula data type. Moreover the performance of the
specialized algorithm described can be further improved if for example the
last time point in the interval does not change for a long period of time (see
Section 4.6).

In conclusion the goal of being able to safely evaluate the operator Trigger
under less strict safety conditions has been achieved, even though not exactly
the way it was imagined first. Originally the idea was to abstract the algo-
rithm for evaluating Since [11] in a locale such that this locale could be used
in order to instantiate monitoring algorithms for the two operators Since and
Trigger. During the work on this thesis we decided to limit the amount of
shared functionality due to the differences between the two operators that
were larger than initially anticipated.
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